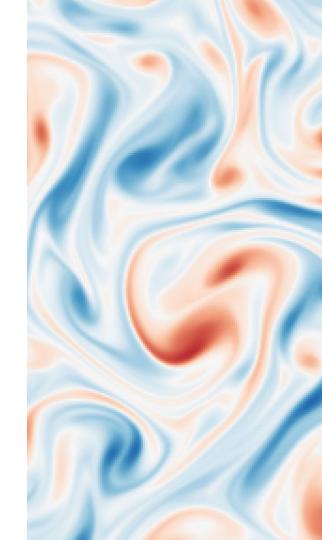


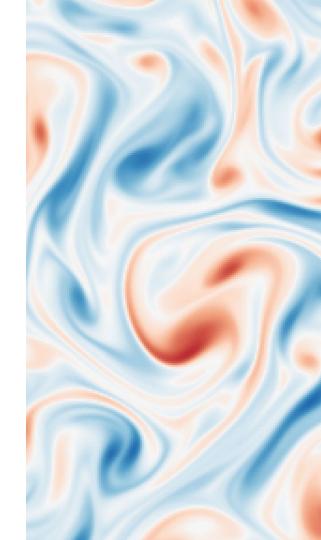
Capturing Fine-Scale Turbulence in Planet-Forming Disks **Using CNN-Augmented Fluid Solvers**

Amelie Lam, Héloïse Méheut, André Ferrari Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, Laboratoire Lagrange, Nice, France

- 1. Problem Setup
- 2. Methodology
- 3. Metrics and Results
- 4. Conclusion

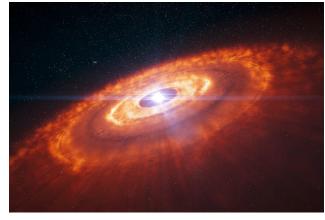


- 1. Problem Setup
- 2. Methodology
- 3. Metrics and Results
- 4. Conclusion



Planet-Forming Disk

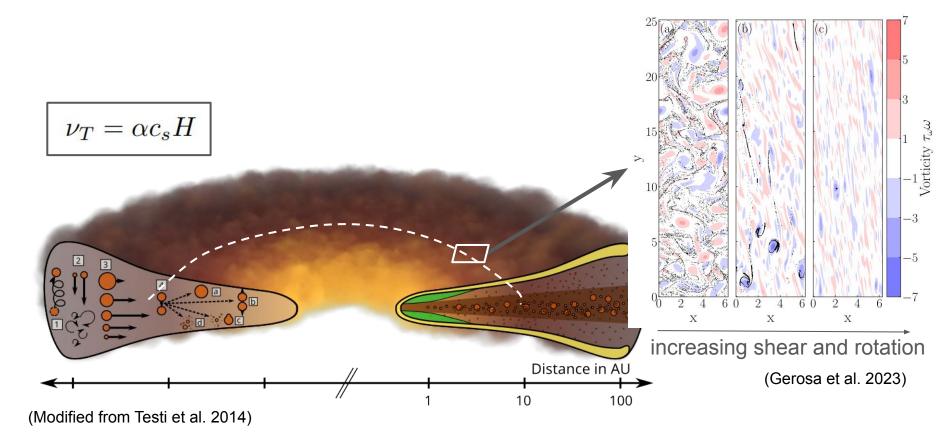
- Keplerian disk around young star
- 99% gas, 1% dust



(Artist's Impression / ESO)

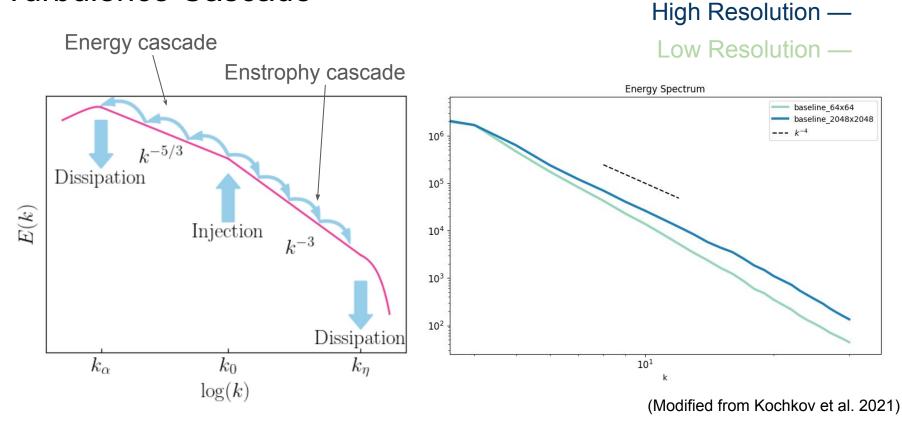
(Sean Andrews / DSHARP / ALMA)

Turbulence in Planet-Forming Disk is a Multiscale Problem



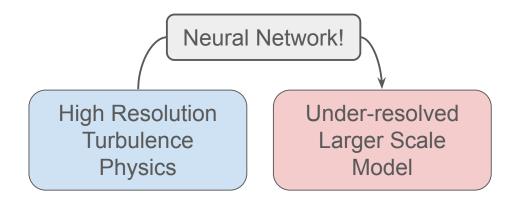
Conclusion O

Turbulence Cascade

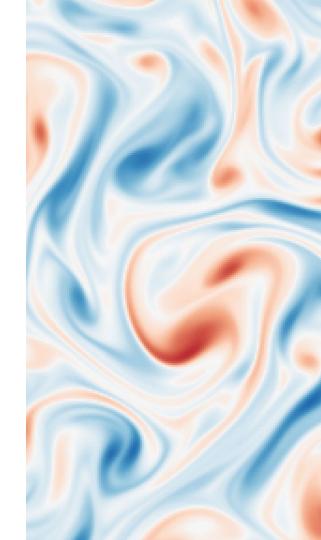


What we want to do?

- Utilise suitable deep learning technique to capture small scale effect of turbulence inside a numerical solver
- Produce fluid simulations that can resolve the effect of turbulence
- 3. Reduce computation cost



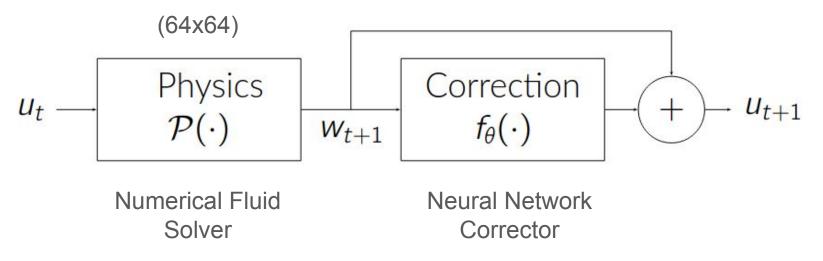
- 1. Problem Setup
- 2. Methodology
- 3. Metrics and Results
- 4. Conclusion



Our Proposed Solution

Inspired by Kochkov et al. 2021

For each timestep:
$$u_{t+1} = \mathcal{P}(u_t) + f_{\theta}(\mathcal{P}(u_t))$$

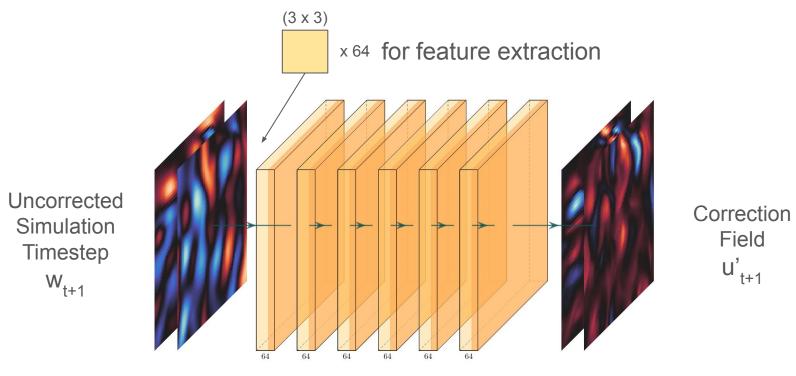


To model <u>subgrid</u> information and <u>speed up</u> simulation

What is important in a dynamic system?

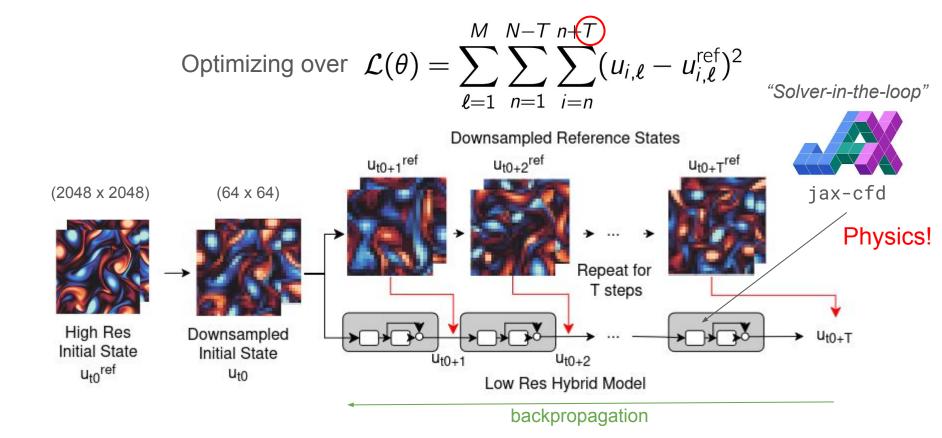
Space! Time! Physics!

Convolutional Neural Network Corrector

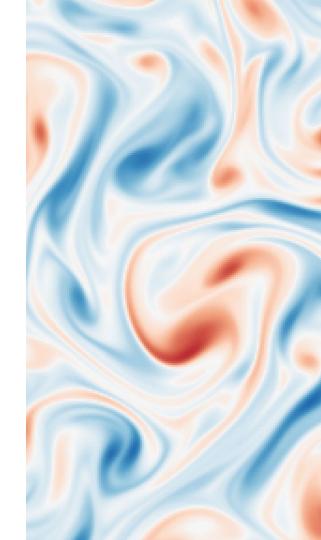


Parameter count: 225K

How can we "teach" the neural network the correct dynamics?



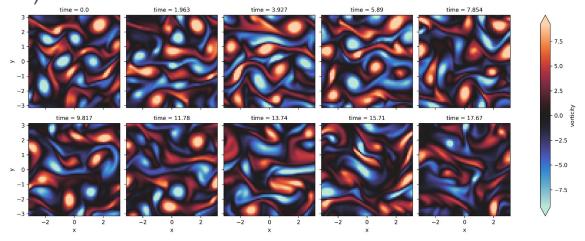
- 1. Problem Setup
- 2. Methodology
- 3. Metrics and Results
- 4. Conclusion



Test

Case Study: forced 2D incompressible homogeneous isotropic turbulence (HIT)

Dataset: 8 simulations of 500 timesteps initiated with different seeds (~7500 training samples)

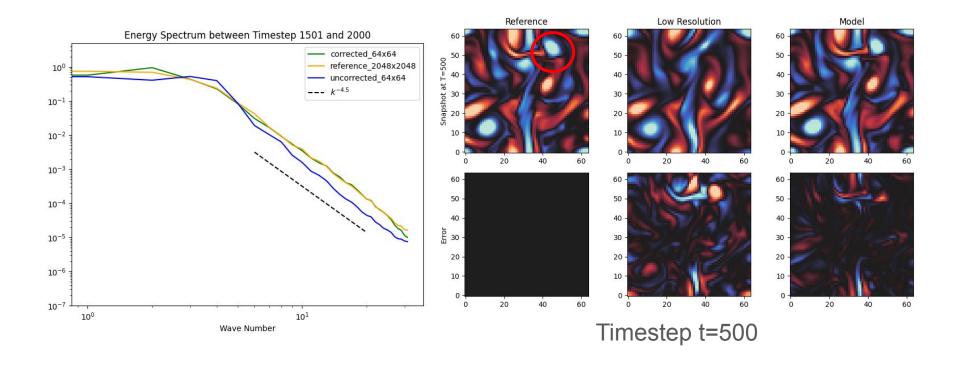


Test: simulations ran for 2000 steps (>> T)

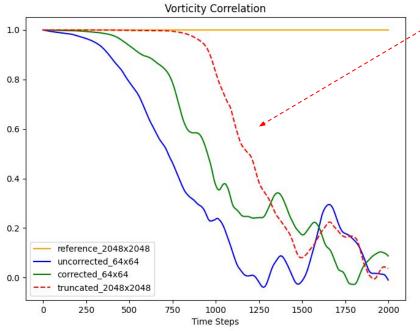
Metrics: vorticity correlation, energy spectrum, vorticity field visualisation

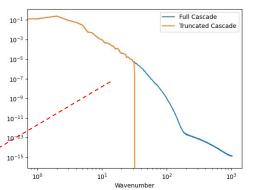
Results

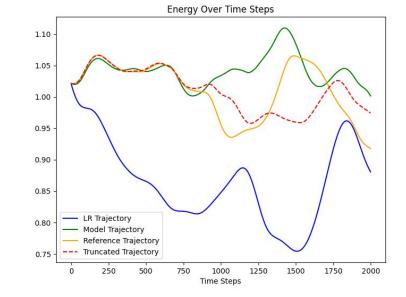
T=32, Epoch=400



Results





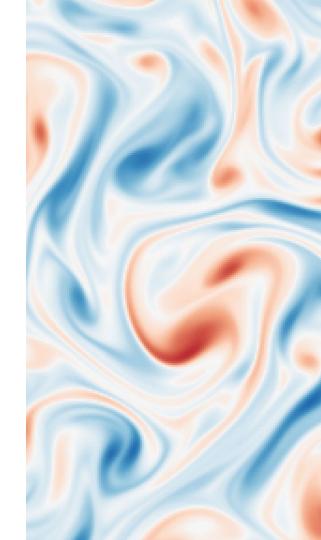


Computation Time

Model training Time: ~6 hours

Type of Simulation	Computation Time to Reach Simulation Time t = 70
High Resolution (2048 x 2048)	~ 7 minutes
Low Resolution (64 x 64)	~ 2 seconds
Low Resolution with Correction	~ 6 seconds

- 1. Problem Setup
- 2. Methodology
- 3. Metrics and Results
- 4. Conclusion



Conclusion

- Neural network is able to supply fluid solver with subgrid information
- Approach made possible with differentiable fluid solver
- Achieved a speed-up of ~x70 from high resolution simulations

Next steps:

- Modify fluid solver to enable shearing box simulations
- Improve neural network architecture
- Add particles into current framework
- Deploy model to existing codes

