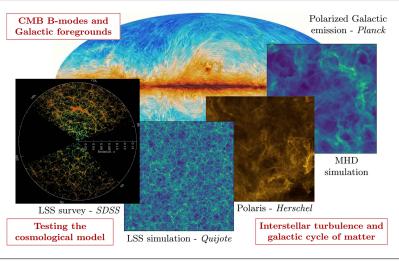
Generative models and component separations for physical fields with Scattering Transforms

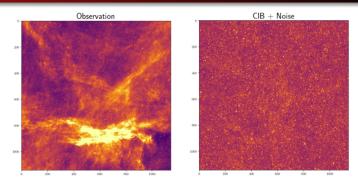
Erwan Allys - ENS, Paris (Physics laboratory and Center for data science)

Journées de l'Action Spécifique Numérique December 15th 2025



- \rightarrow Common difficulty: non-linearity \Rightarrow non-Gaussian structures
 - → Sometimes no model and limited data regime...
- \rightarrow How to still leverage these structures for scientific objectives?

Example: CIB/Galactic dust emission



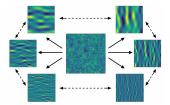
- Galactic dust emission and Cosmic Infrared Background (CIB)
 - ▶ Thermal dust emission in the interstellar medium
 - ► Same emission from Milky Way and other galaxies
 - ► Cosmic background dominates a smaller scales
 - → Characterization of Galactic dust on those scales?
 - \rightarrow Challenge of low-data regime + lack of prior model

Outline

- 1 Scattering Transforms and generative models
- 2 Component separation and modeling from the data

Scattering transform (ST) statistics

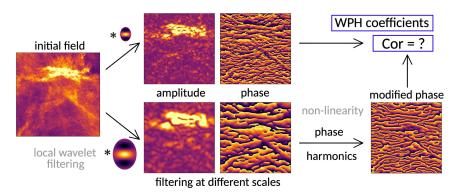
- Scattering transform statistics (Mallat+, 2010+)
 - ► Initially developed in data science
 - → suited for non-linear/non-Gaussian processes
 - ► Inspired from neural networks
 - → efficient characterization and reduced variance
 - ▶ Do not need any training stage
 - \rightarrow explicit mathematical form and interpretability



- → Wavelet filters separating the different scales
- \rightarrow Coupling between scales with non-linearities

Scattering Transform (ST) statistics

Wavelet Phase Harmonics and phase alignment (EA+20)



- ightarrow 1 coeff / pair of scales / type of interaction
- → Can be extended to cross-statistics between maps

Scattering Transform (ST) statistics

A family of statistics

- ▶ Different generations of statistics
 - → Wavelet Scattering Transforms (WST)
 - → Wavelet Phase Harmonics (WPH)
 - → Scattering covariances/spectra
- ▶ All share the same framework

(EA+19)

(EA+20)(Cheng+23)

Scattering Transform (ST) statistics

A family of statistics

- Different generations of statistics
 - → Wavelet Scattering Transforms (WST)
 - → Wavelet Phase Harmonics (WPH)
 - → Scattering covariances/spectra
- ▶ All share the same framework

(EA+19)(EA+20)

(Cheng+23)

- Characterization and parameter inference
 - ► Interstellar medium

Large scale structures

(EA+19, Regaldo+20, Saydjari+20, Lei+22)(Chenq+20, 21, 24)

► Weak lensing

(EA+20, Eickenberg+22, Valogiannis+22a, 22b)

▶ 21cm epoch of reionization

(Greig+22, Hothi+23)

...

- → Very informative (sometimes on par with CNN!)
- → Wide range of applicability (generic, training-less)

- Generative model from ST statistics (Bruna, Mallat, 19)
 - ▶ From the ST statistics $\Phi(s)$ of data s
 - ► Maximum entropy model under ST constraints
 - Quantitative non-Gaussian modeling of physical processes

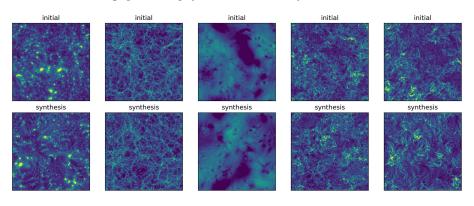
$$p(s) \longrightarrow s_0 \longrightarrow \phi(s_0) \longrightarrow p_{\phi(s_0)}^{\text{m.e.}}(\tilde{s}) \longrightarrow \tilde{s}$$

- Generative model from ST statistics (Bruna, Mallat, 19)
 - ▶ From the ST statistics $\Phi(s)$ of data s
 - ► Maximum entropy model under ST constraints
 - ▶ Quantitative non-Gaussian modeling of *physical processes*

$$p(s) \longrightarrow s_0 \longrightarrow \phi(s_0) \longrightarrow p_{\phi(s_0)}^{\text{m.e.}}(\tilde{s}) \longrightarrow \tilde{s}$$

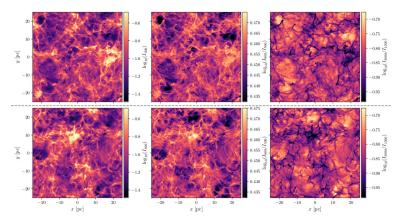
- Practical implementation (microcanonical)
 - ightharpoonup Constraints $\Phi(s)$ from a (set of) data s
 - ► Sampled with a gradient-descent algorithm
 - \rightarrow from a white noise realization
 - \rightarrow Pixel-space optim. of \tilde{s} such that $\Phi(\tilde{s}) \simeq \Phi(s)$

- Generative model from a single image (Cheng+24)
 - ► Scattering spectra + physical dimensionality reduction



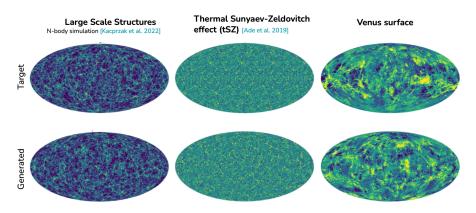
- → Realistic NG models from a few hundreds coefficients!
- \rightarrow Usual (NG) statistics very well reproduced (up to 1-10 %)

- Multi-frequency dust emission models (Regaldo+22)
 - ► Cross-WPH, simulated dust intensity, 300/500/800/1500/3000GHz



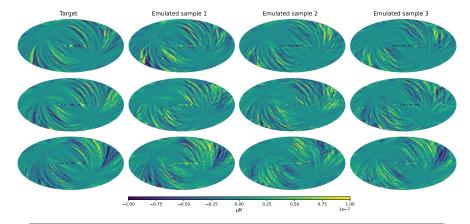
 \rightarrow Extension to cross-statistics beyond linear correlation

• Scattering transform on the sphere (Mousset+24)



 \rightarrow Extension possible to different types of data \rightarrow 1D, 3D, 2+1D data... (Morel+25, Hothi+25)

- Inhomogeneous processes on the sphere (Campeti+25)
 - ► Full-sky CMB instrumental systematics



→ Extension (partially) possible to non-homogeneous data

Application of ST generative models

- Modeling a known physical process
 - ► At least one sample of the process of interest
 - ► Interest in having many realizations:
 - \rightarrow data augmentation e.g. for machine learning
 - \rightarrow bootstrapping for various statistical estimations
 - ► ST models are not perfect 1-to-1 replacement

(Jeffrey+, 22)

Application of ST generative models

- Modeling a known physical process
 - ► At least one sample of the process of interest
 - ► Interest in having many realizations:
 - \rightarrow data augmentation e.g. for machine learning
 - → bootstrapping for various statistical estimations
 - ► ST models are not perfect 1-to-1 replacement
- Low dim. parametric models of physical fields
 - ▶ Parameters are the ST coefficients
 - ► As parameter space for inverse problems
 - → Allow to work without physically-driven models
 - ► As latent space for machine-learning tasks
 - → Modeling of component from unlabeled mixture

(Jeffrey+, 22)

 \rightarrow see S. Pierre's talk

Application of ST generative models

- Modeling a known physical process
 - ► At least one sample of the process of interest
 - ► Interest in having many realizations:
 - \rightarrow data augmentation e.g. for machine learning
 - \rightarrow bootstrapping for various statistical estimations
 - ► ST models are not perfect 1-to-1 replacement
- Low dim. parametric models of physical fields
 - ▶ Parameters are the ST coefficients
 - ► As parameter space for inverse problems
 - → Allow to work without physically-driven models
 - As latent space for machine-learning tasks
 - → Modeling of component from unlabeled mixture

→ Lot of new possibilities in low-data regimes or without prior models

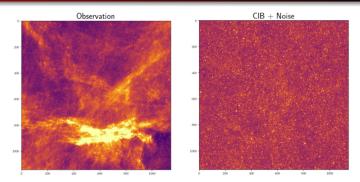
(Jeffrey+, 22)

ightarrow see S. Pierre's talk

Outline

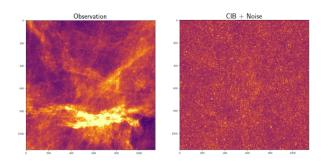
- Scattering Transforms and generative models
- 2 Component separation and modeling from the data

Separating CIB and Galactic dust emission



- Galactic dust emission and Cosmic Infrared Background (CIB)
 - ▶ Thermal dust emission in the interstellar medium
 - ► Same emission from Milky Way and other galaxies
 - ► Cosmic background dominates a smaller scales
 - → Characterization of Galactic dust on those scales?
 - \rightarrow Challenge of low-data regime + lack of prior model

Separating CIB and Galactic dust emission

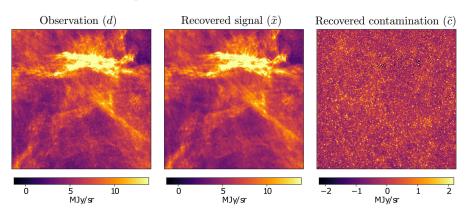


- Dust emission/Cosmic Infrared Background (Auclair+, 24)
 - ightharpoonup d = s + c, s thermal dust emission, c CIB
 - ► CIB model from separate observation (cosmological ⇒ homogeneous)
 - ▶ Gradient descent under two constraints, using a ST-model for $\{c_i\}_i$

$$\langle \Phi(\tilde{s} + c_i) \rangle_i \simeq \Phi(d), \qquad \Phi(\tilde{c}) = \Phi(c)$$

Separating CIB and Galactic dust emission

• Recovered components (Auclair+24)



- → Statistical component separation solely from obs. data
- → Thermal dust is statistically recovered up to the beam

A general framework for component separation

Erwan Allys

- Constraints from ST statistics
 - ► Constraints written directly from available data
 - ► Can rely on ancillary data with cross-statistics
 - ► Complete knowledge of all components not needed

A general framework for component separation

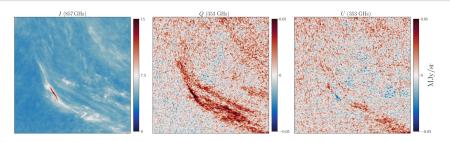
• Constraints from ST statistics

- Constraints written directly from available data
- ► Can rely on ancillary data with cross-statistics
- ► Complete knowledge of all components not needed

• Optimization scheme

- Sampling e.g. with gradient descent in pixel space
- Degrees of freedom can be adapted
- ► Complementary weighting schemes for the losses
 - → Versatile framework for component separation
 - → Can include various statistical constraints

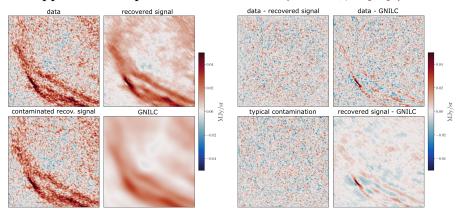
Application to polarized Galactic dust foregrounds



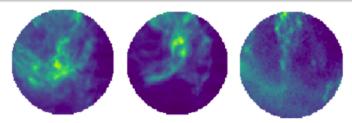
- Application on polarized Planck data (Tsouros+, in prep.)
 - ► Improvement from Régaldo+21 and Delouis+22
 - ▶ Dust Q/U emission at 353 GHz + noise + CMB
 - ▶ 7 constraints including correlation with total intensity (857 GHz)
 - \rightarrow Generate new Q/U dust map directly from the data? \rightarrow No prior model for the polarized dust emission

Application to polarized Galactic dust foregrounds

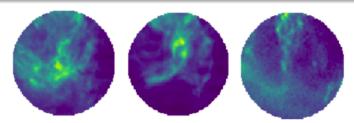
• Application on polarized Planck data (Tsouros+, in prep.)



- \rightarrow Maps that pass all compatibility tests with the data \rightarrow To be extended full-sky and multi-frequency
 - \rightarrow see S. Pierre's talk for a full Bayesian framework!

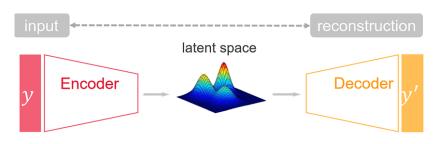


- HI observations of the interstellar medium
 - ▶ Warm (WNM) and Cold (CNM) Neutral Media
 - ► Two phases with different spectral/spatial properties



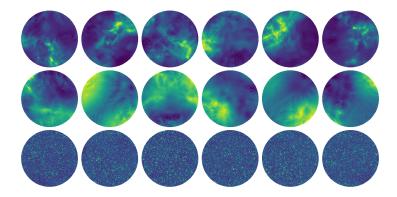
- HI observations of the interstellar medium
 - ▶ Warm (WNM) and Cold (CNM) Neutral Media
 - ► Two phases with different spectral/spatial properties
- Modeling Galactic WNM/CNM directly from the data?
 - ► GALFA-H_I in 3 km/s bins (treated as 2D maps)
 - ▶ High-latitude + |v| < 40 km/s, 4' angular resolution
 - $\sim 36 \text{k} 256^2$ patches with CNM, WNM, noise
 - \rightarrow First step with only spatial morphology
 - \rightarrow Lack of prior model + interface with Machine Learning

- Variational Auto-Encoder (VAE) in ST space (Siahkoohi+, 23)
 - ► Learn the identity in ST space over the dataset
 - ► Gaussian mixture model in latent space
 - → one Gaussian per component (hyperparameter)



- \rightarrow Unsupervised learning of components in ST space
 - → ST model for each component after training

- Application to GALFA-HI data (Lei, Clark+, 2025)
 - ▶ Unsupervised identification of 3 components

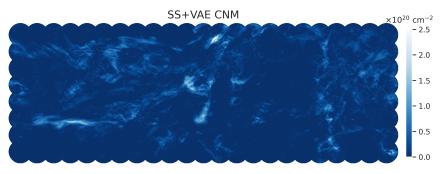


 \rightarrow WNM/CNM/noise well modeled!

→ Interfacing ST models with other ML algorithms

Application to CNM mapping

- Component separation from learned models (Lei, Clark+, 2025)
 - ► ST-based component separation (other could be used)
 - ▶ 19°x51° footprint, LOS-integrated CNM column density



- → Phase separation directly from the data (preliminary!)
- → From spatial structure only, spectral information next

Conclusion

Scattering Transforms

- → Efficient non-Gaussian statistics inspired from neural network
- → Characterize interaction between scales in non-linear processes

• New tools for (astro-)physics

- → Modeling and component separations
- → Ability to work with a very limited amount of data
- → Ability to work without prior data model

• Applications to come are very exciting!

- → Versatile and powerful tools: happy to discuss :-)
- \rightarrow We are developing a versatile library: stay tuned!

Thanks for your attention!