
What is the contribution of gravity on the mass assembly of star-forming clouds?

Using tracers for time integrated force balance in Ramses

Noé Brucy, Enrique Vázquez-Semadeni, Tine Colman, Jérémy Fensch, Ralf Klessen

ASNUM - Grenoble, 12/2025

The matter cycle in the ISM

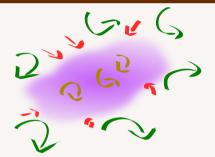
Key questions when studying star formation at the Galactic / ISM scale

How do the the warm diffuse gaz condense into cold dense clouds? From there, how do these clouds further condense to form stars?

Several answers one can get

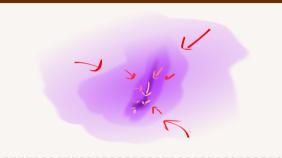
- ▶ It's all (or mainly) due to [insert your favorite process here] (usually to pick among gravity, turbulence or magnetic field)
- ► It's a bit of everything
- It depends

Key questions when studying star formation at the Galactic / ISM scale


How do the the warm diffuse gaz condense into cold dense clouds? From there, how do these clouds further condense to form stars?

Several answers one can get:

- ▶ It's all (or mainly) due to [insert your favorite process here] (usually to pick among gravity, turbulence or magnetic field)
- ▶ It's a bit of everything
- It depends


Mass assembly of molecular clouds and star formation

Turbulence-Driven

- 1. Turbulence shapes the density field
- 2. Small overdensities collapse because of gravity.

Gravity-driven (GHC)

Gravity acts as a conveyor belt that drive gas accross density layers.

How to distinguish from the two paradigms?

In the Global Hierachical Collapse scenario, the **contribution** of the gravitational pull needs to be large.

For a given molecular cloud we need to quantify how much gas is

- ▶ gravity-driven
- ▶ inflowing into the cloud

We can do it in simulations of the interstellar medium, by tracking the gas

How to distinguish from the two paradigms?

In the Global Hierachical Collapse scenario, the **contribution** of the gravitational pull needs to be large.

For a given molecular cloud we need to quantify how much gas is:

- gravity-driven
- ▶ inflowing into the cloud

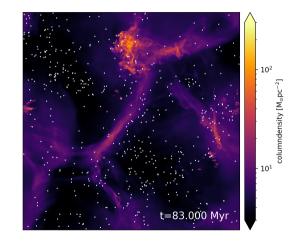
We can do it in simulations of the interstellar medium, by tracking the gas

How to distinguish from the two paradigms?

In the Global Hierachical Collapse scenario, the **contribution** of the gravitational pull needs to be large.

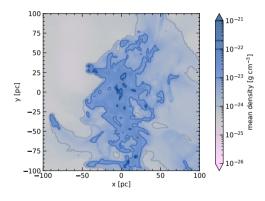
For a given molecular cloud we need to quantify how much gas is:

- ▶ gravity-driven
- ▶ inflowing into the cloud

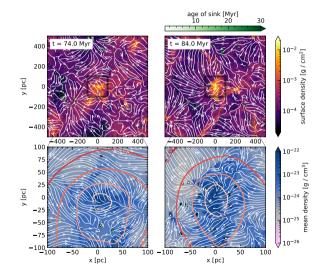

We can do it in simulations of the interstellar medium, by tracking the gas

Application on a ISM simulation

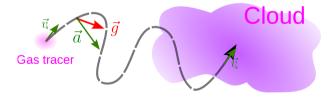
Introduced in Colman+2025


Stratified ISM box simulation

- Stratified kpc box
- ► ISM cooling/heating
- ► Supernova and HII radiation
- ► Resolution 4 pc 1 pc
- ► Sinks form at $2.34 \cdot 10^{21} \text{ g} \cdot \text{cm}^{-3}$ (10³ cm⁻³)


What are we looking at

- ► A giant overdensity of gas
- ► Lifetime ≈ 15 Myr
- ▶ Density: from 10^{-23} to $4 \cdot 10^{-21}$ g·cm⁻³
- ► CNM mass: $2 \cdot 10^5$ M_☉
- ► Size: ≈ 200 pc
- ▶ Velocity dispersion: 9 km·s⁻¹


Resimulation of the life of a molecular cloud

- From $t_i = 74$ Myr to $t_f = 84$ Myr
- ► At *t_i*, introduction of one tracer particle per cell
- Recording of the forces experienced by the tracer particles

Cloud-in-cell tracers particle

How do we recognize gravity-driven inflowing gas?

Cloud-in-cell tracers particle

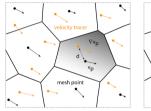
How do we recognize gravity-driven inflowing gas?

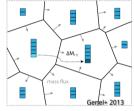
$$\overrightarrow{a}_{\mathrm{grav}}(t_s, t_e) = \frac{\int_{t_s}^{t_e} \overrightarrow{g}' \, \mathrm{dt}}{t_e - t_s}$$
 (1)

$$\overrightarrow{a}_{\mathrm{other}}(t_{s}, t_{e}) = \frac{\int_{t_{s}}^{t_{e}} \overrightarrow{a} \, \mathrm{dt}}{t_{e} - t_{s}} - \overrightarrow{V}_{\mathrm{grav}}(t_{s}, t_{e})$$
 (2)

Cloud-in-cell tracers particle

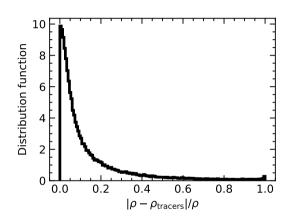
How do we recognize gravity-driven inflowing gas?


$$\overrightarrow{a}_{\text{grav}}(t_s, t_e) = \frac{\int_{t_s}^{t_e} \overrightarrow{g} \, dt}{t_e - t_s}$$
 (1)


$$\overrightarrow{a}_{\mathrm{other}}(t_{s}, t_{e}) = \frac{\int_{t_{s}}^{t_{e}} \overrightarrow{a} \, \mathrm{dt}}{t_{e} - t_{s}} - \overrightarrow{V}_{\mathrm{grav}}(t_{s}, t_{e})$$
 (2)

Gravity-driven: gravity contributed to more than 50 % of the resulting integrated acceleration

$$a_{\rm grav} > a_{\rm other}$$


Tracers in Ramses?

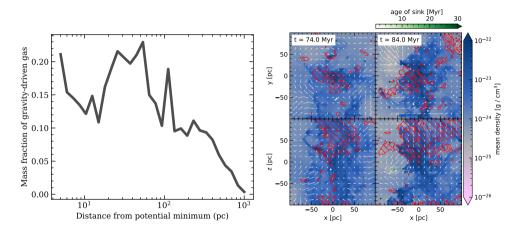
- ► We use velocity-advected tracers (Pichon+2011, Dubois+2012)
- ► Known for their lack of accuracy (Genel+2013)
- ▶ Other technique: Monte-Carlo tracers (Cadiou+2018) \rightarrow not suited for force recording
- ► We quantify the error on the density

Tracers in Ramses?

- ► We use velocity-advected tracers (Pichon+2011, Dubois+2012)
- ► Known for their lack of accuracy (Genel+2013)
- ▶ Other technique: Monte-Carlo tracers (Cadiou+2018) \rightarrow not suited for force recording
- ► We quantify the error on the density

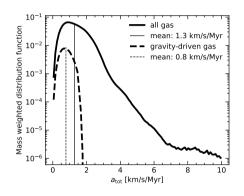

Error < 15 % for 70 % of the tracers' mass.

Gravity-driven accretion


Where is the gravity-dominated gaz coming from?

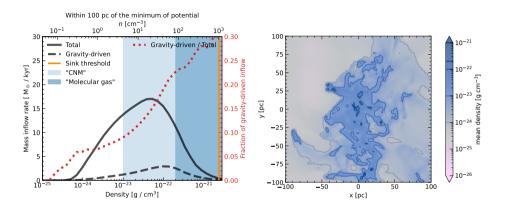
- Density slices
- ▶ Red = > 20 % of gravity-dominated tracers
- ► White dots = new stars

Answer: A bit from everywhere, with self-gravity dominated gaz in the midplane and a significant contribution from the Galactic fountain.



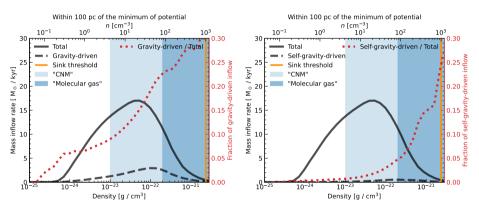
Mass fraction of gravity-driven gas

A fraction of 10-20 % of the gas is gravity-driven up to 100 pc from the center of the cloud

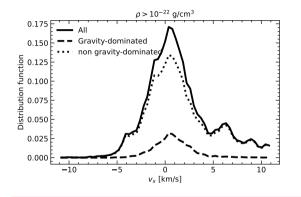

But gravity-dominated gaz is slow

Supernova driven gaz can reach several hundreds of km/s while gravity infall is limited to 8 to 10 km/s.

Can it has a significant contribution to the clouds' mass assembly?


Mass flow towards across isodensity lines

10 % of the gas inflowing onto the GMC is gravity-driven. This fraction rise to 30 % inside the clouds.


Stratified potential vs Self-gravity

Proxy: looks at gas for which the movement parallel to the plane is gravity-driven

Stratified potential dominates the gravity-driven gas at large scales while self-gravity is stronger in dense regions

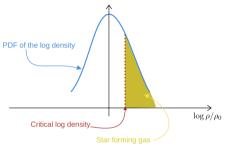
Contribution of the gravity-driven gas to the linewidth

- Linewidth over a 100 pc wide area
- ► Gravity-driven gas: 10 % of the variance of the velocity
- No change of the FWHM

At 100pc scale, the contribution of gravity-driven gas to the linewidth is negligible

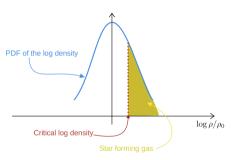

Conclusions

Brucy+2025 (accepted today in Open Journal of Astrophysics!)

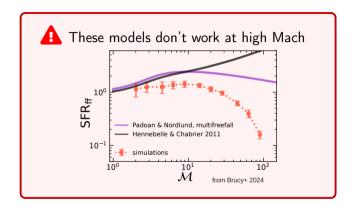

- Tracers particles allows for Lagrangian tracking of gas flow in Eulerian simulations, with some caveats.
- Only 10 % on the inflowing gas is gravity-dominated → not the main driver of cloud mass assembly.
- ► The fraction of density inflowing gas progressively increases with density.

Perspectives

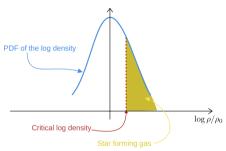
- ▶ Do a statistical study, look at larger and small scales
- Derive a criterion that can be used in observations

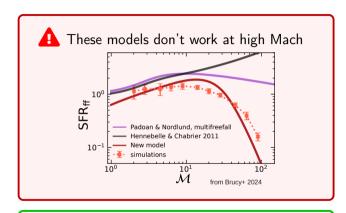


A bit more on Gravo-turbulent models

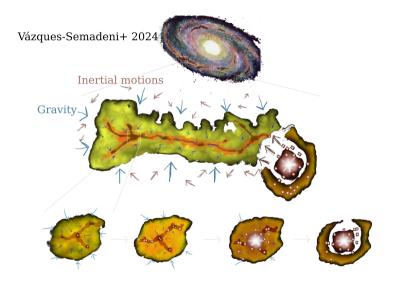


Krumholz & McKee 2005, Padoan & Nordlund 2008, Hennebelle & Chabrier 2011, Federrath and Klessen 2012.

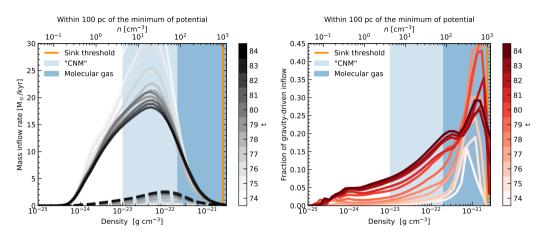

A bit more on Gravo-turbulent models


Krumholz & McKee 2005, Padoan & Nordlund 2008, Hennebelle & Chabrier 2011, Federrath and Klessen 2012.

A bit more on Gravo-turbulent models

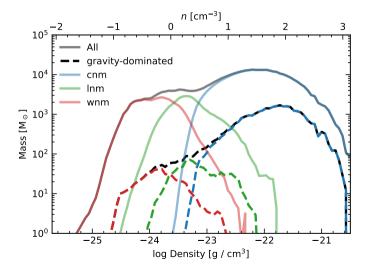


Krumholz & McKee 2005, Padoan & Nordlund 2008, Hennebelle & Chabrier 2011, Federrath and Klessen 2012.

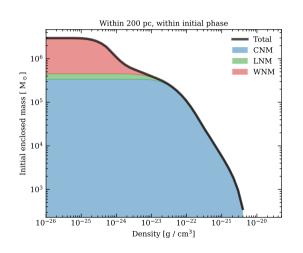


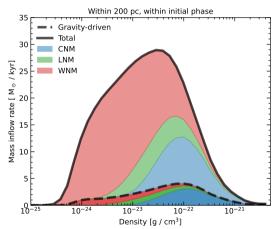
Check new **Turbulent support** model: Hennebelle+2024, Brucy+ 2024.

A bit more on GHC


Time evolution

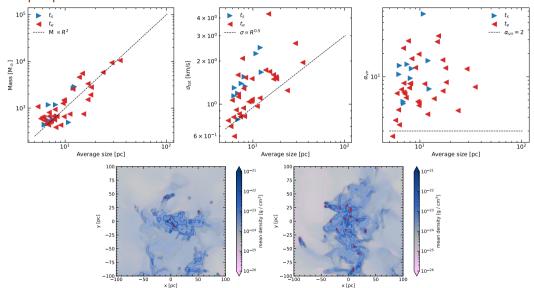
The fraction of gravity-driven increases as the integration time increase


Phase decomposition


based on temperature

Phase decomposition

based on temperature



Perspective: towards an observational criterion

Cloud properties

Tracers in Ramses?

Changes in the code: tracers_memory branch

Goal: Gravitational contribution to the acceleration

- ► Make it possible to initialize "classical" tracers (again)
- Add new particle arrays (vp_grav, vp_prev, ap_grav)
 - Declaration
 - Allocation
 - Communication
 - ► I/O (dump & re-read)
- ▶ Update the new arrays with grav contribution (move_fine and synchro_fine)
- ► Repair and adapt amr2cube and part2cube

Thanks to the headers, the new arrays are directly read by Osyris.

In green: Useful fixes that were ported in Ramses Vanilla.