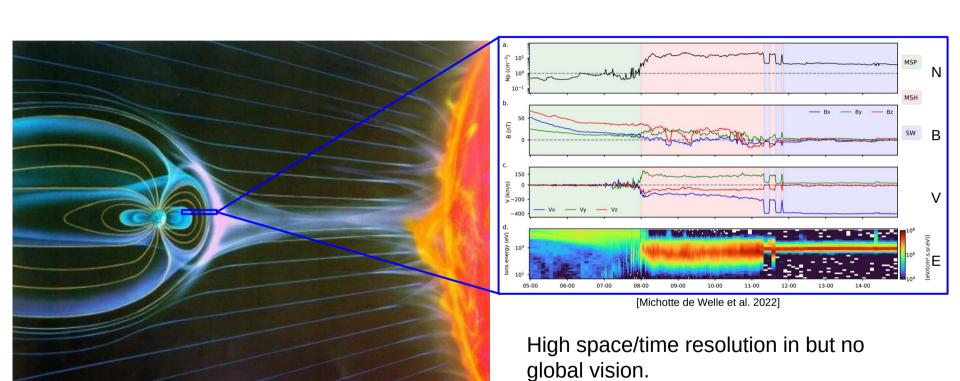
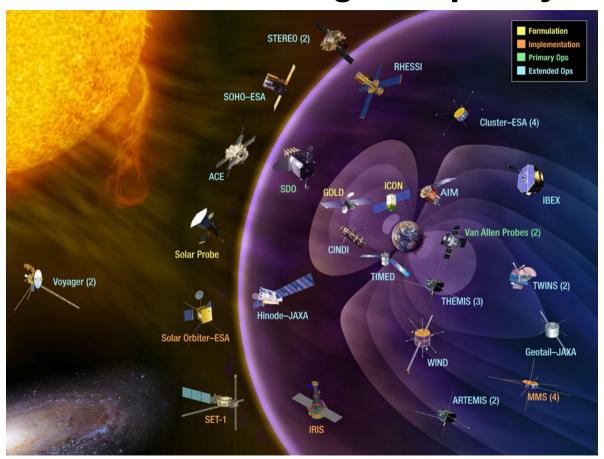
PHARE: Towards mesh and model refinement for space plasmas

Ulysse CAROMEL Nicolas AUNAI, Philip DEEGAN, Roch SMETS, Ivan GIRAULT

High resolution but localised

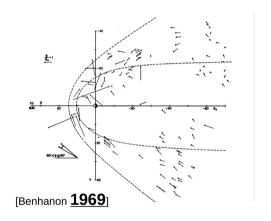


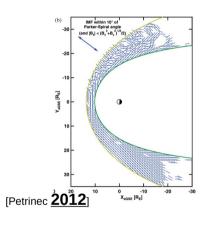
We have decades of good quality data

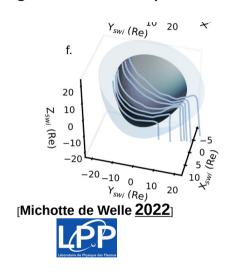


Statistics and machine learning: Global but not dynamic

Recent efforts in machine learning has allowed scaling to much larger number of point



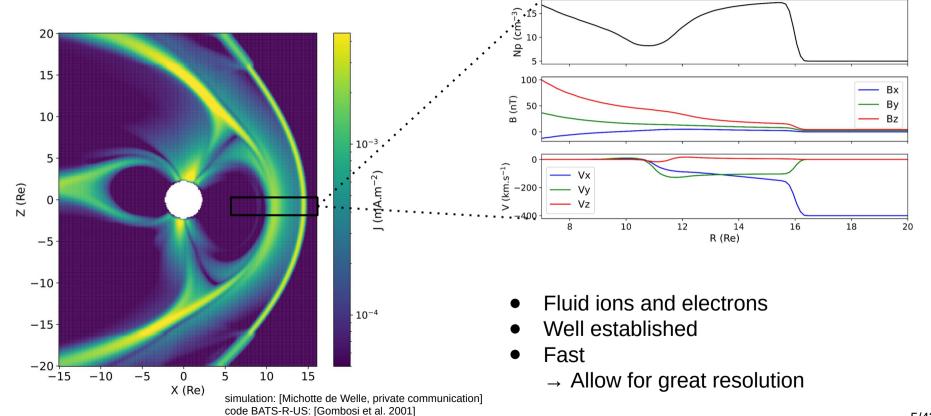


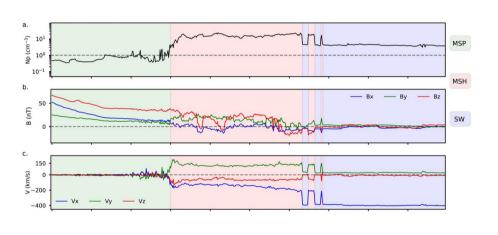


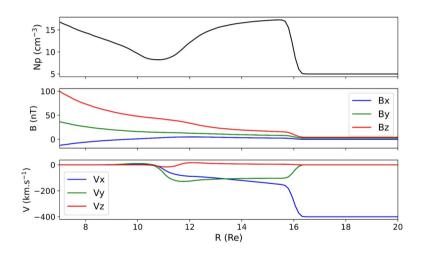
Averaged: we lose all small (temporal and spatial) scale processes that drive the global dynamics.

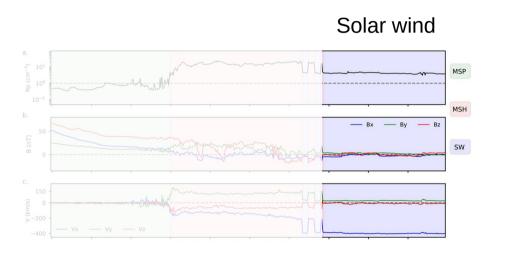
We want simulations to have both the global scale and the dynamics.

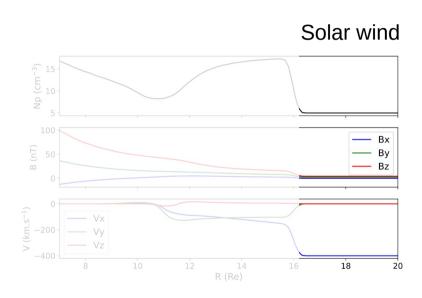
State of the art of global simulations: MHD

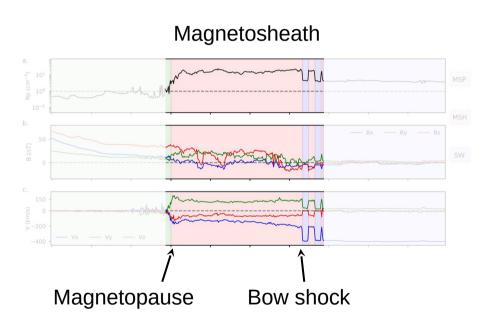


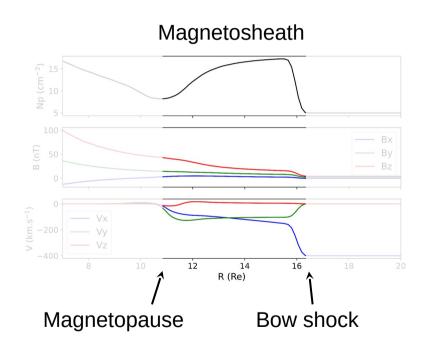


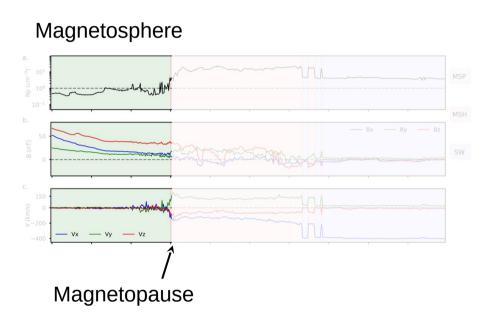


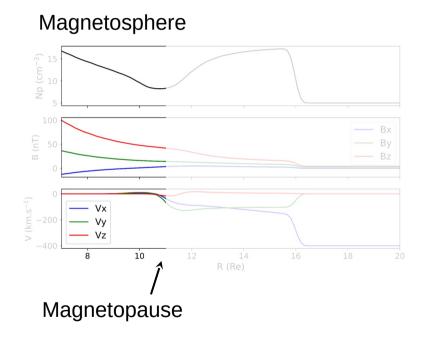




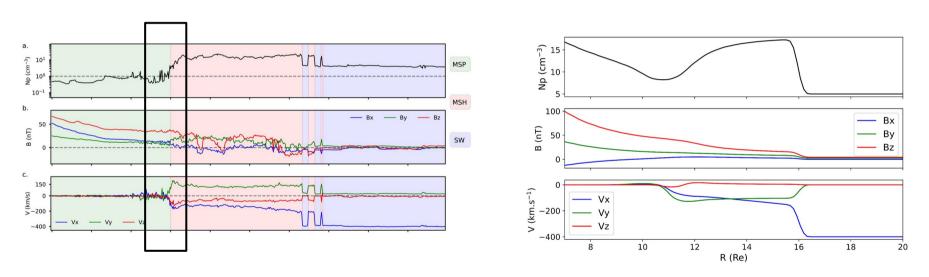




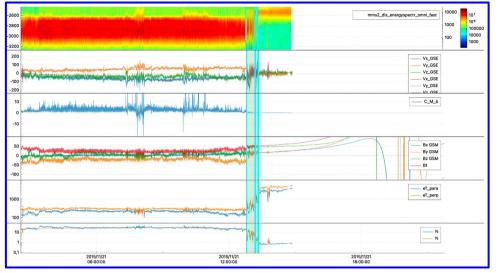




But misses small-scale processes driving their coupling

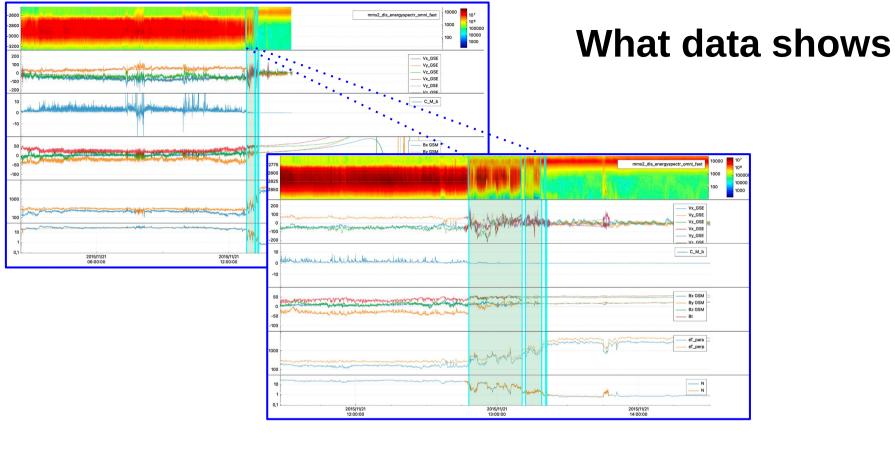


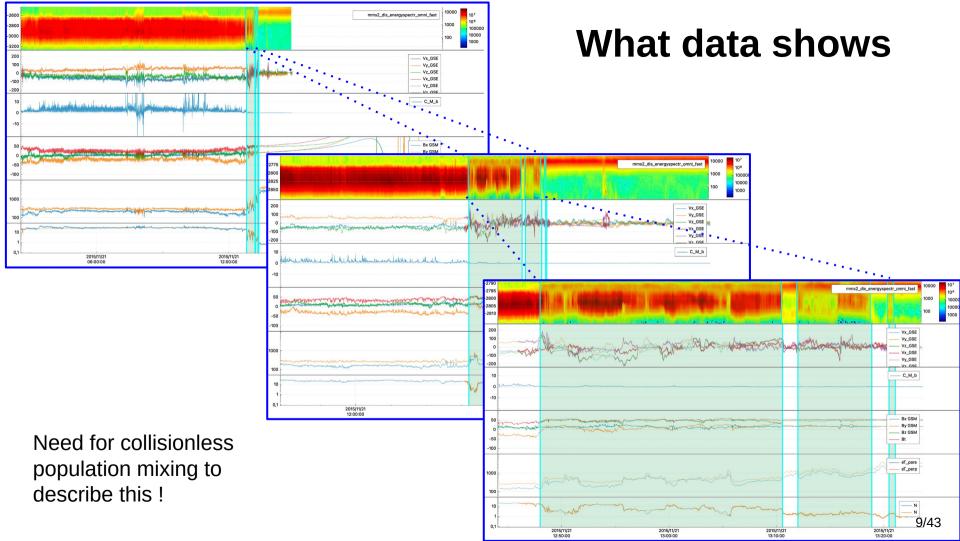
What happens in the active boundaries between the different environments?



[SciQLop software: Jeandet et al. (2025)] https://doi.org/10.5281/zenodo.17176824

What data shows

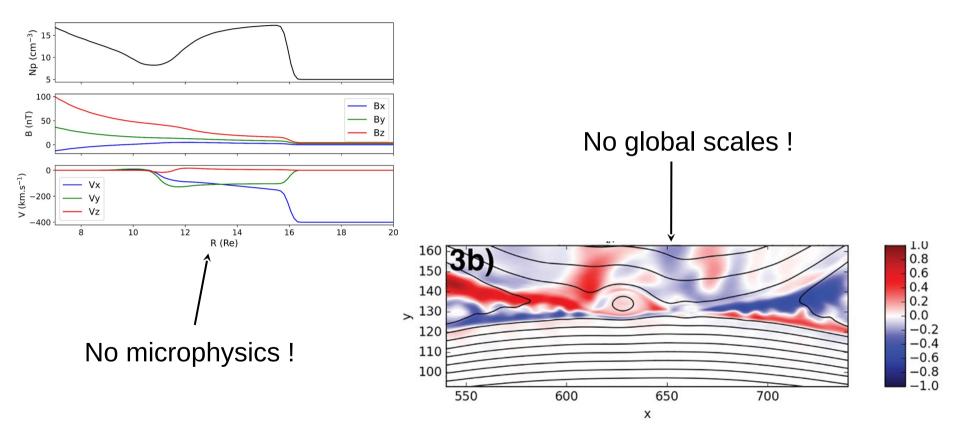




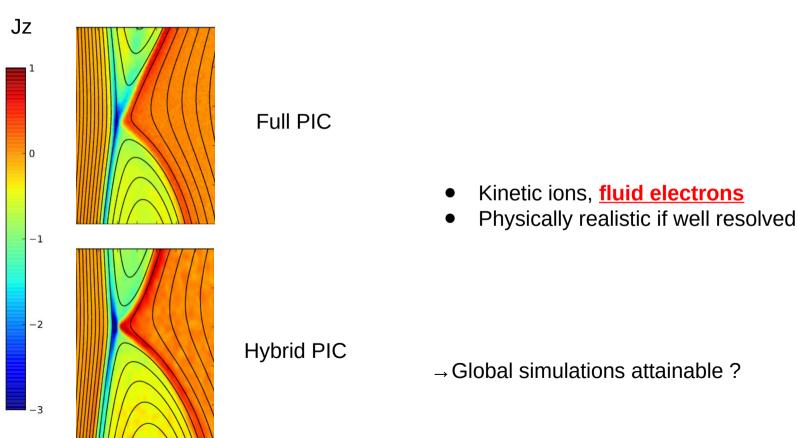
*Full" PIC: no global scale **Full" Pic: no global scale **Total Pic: no global scale **Simulation: [Dargent et al. 2020] code Smilei: [Derouillat et al. 2018]

- Kinetic ions and electrons
- Realistic physics
- Very computationally heavy
 - → Restrained to a small box
 - → Global scale is not attainable

How can we do better?

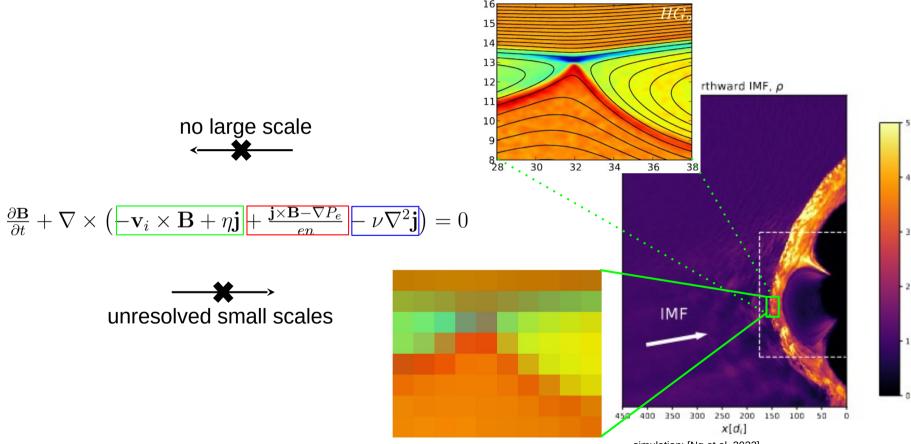


Hybrid PIC: the good compromise?



[Aunai et al. 2013] 12/43

Hard to have both small and large scales



simulation: [Ng et al. 2022] code HYPERS: [Omelchenko & Karimabadi 2012]

We can't just "use bigger computers"

Resolution in 3d hybrid Goal: simulations:

1 to
$$5\delta_i \longrightarrow 0.05\delta_i$$
 100

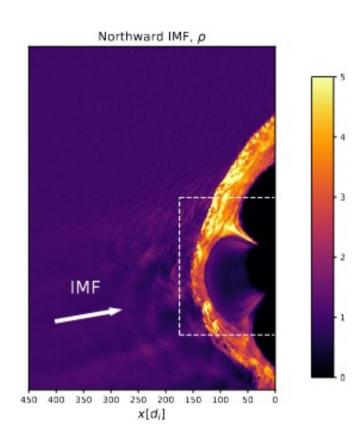
Per dimension: $100^3 = 10^6$

. .

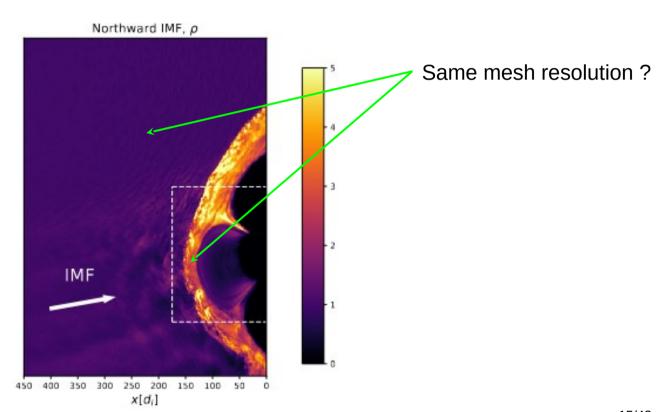
Time step: $\Delta t \sim \Delta x^2$ $100^2 = 10^4$

$$100^3 \times 100^2 = 10^{10}$$

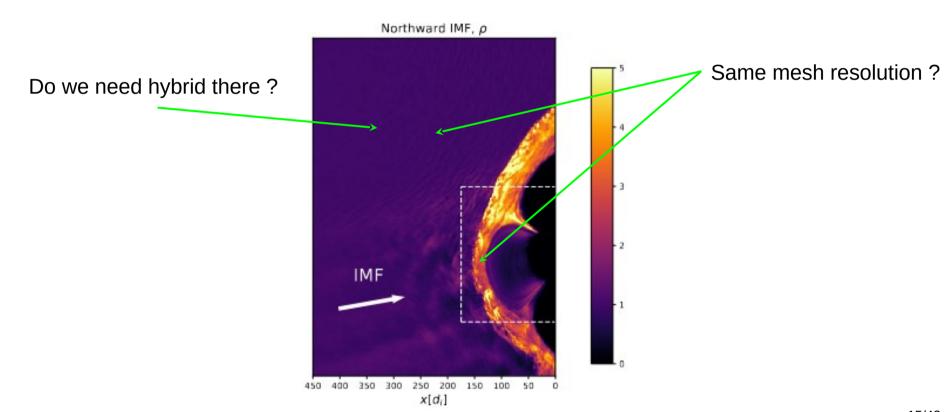
We would need $10^{10} \, \mathrm{times}$ more compute power !



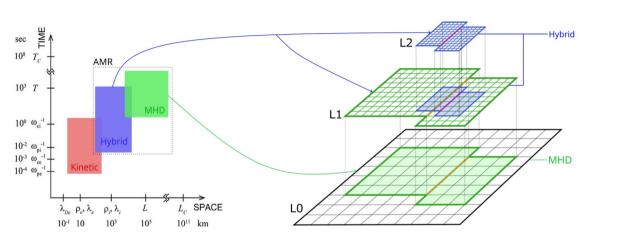
We need a different approach

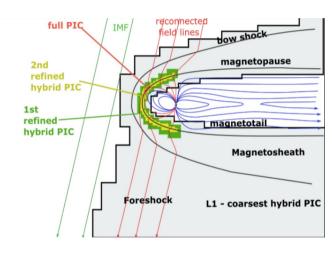


We need a different approach



Our goal in PHARE: adaptive mesh and model refinement (AM2R)





PHARE: an open-source, modern C++ plasma simulation code developed at LPP **for the community**.

A code for the community

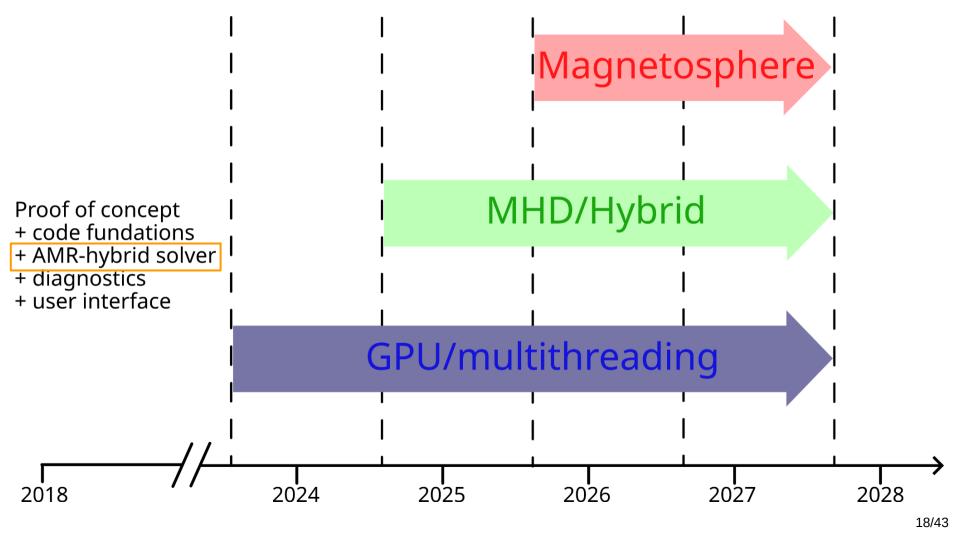
Open source

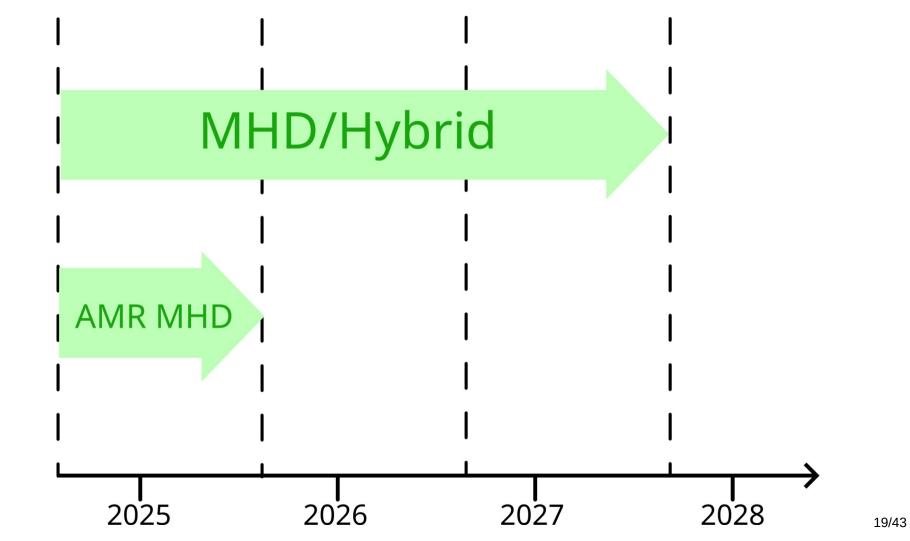
High perf, abstractions

User friendly

Testability, Robustness

- 100% open source.
- Modern c++ (c++20) for performance and abstraction while maintaining friendly python user interface.
- Extensive testing running on continuous integrations.
- Relies on well established AMR library called SAMRAI.





We advance the following equations:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

Continuity equation

$$\frac{\partial(\rho\mathbf{v})}{\partial t} + \nabla \cdot [\rho\mathbf{v}\mathbf{v} - \mathbf{B}\mathbf{B} + P^*] = 0$$

Momentum equation

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \left[(\mathcal{E} + P^*) \mathbf{v} + \frac{\mathbf{E} \times \mathbf{B}}{\mu_0} \right] = 0$$

Energy equation

with:

$$P^* = P + \frac{\mathbf{B} \cdot \mathbf{B}}{2}$$

The total pressure

We advance the following equations:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

Continuity equation

$$\frac{\partial(\rho\mathbf{v})}{\partial t} + \nabla \cdot [\rho\mathbf{v}\mathbf{v} - \mathbf{B}\mathbf{B} + P^*] = 0$$

Momentum equation

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \left[(\mathcal{E} + P^*) \mathbf{v} + \frac{\mathbf{E} \times \mathbf{B}}{\mu_0} \right] = 0$$

Energy equation

Polytropic closure:

$$\mathcal{E} = \frac{P}{\gamma - 1} + \frac{1}{2} (\rho(\mathbf{v} \cdot \mathbf{v}) + \frac{\mathbf{B} \cdot \mathbf{B}}{\mu_0})$$

We advance the following equations:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \qquad \qquad \text{Continuity equation}$$

$$\frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot [\rho \mathbf{v} \mathbf{v} - \mathbf{B} \mathbf{B} + P^*] = 0 \qquad \qquad \text{Momentum equation}$$

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \left[(\mathcal{E} + P^*) \mathbf{v} + \frac{\mathbf{E} \times \mathbf{B}}{\mu_0} \right] = 0 \qquad \qquad \text{Energy equation}$$

 $rac{\partial \mathbf{B}}{\partial t} +
abla imes \mathbf{E} = 0$ Hall Presistivity resistivity

vity ∇^2 :

with:

Faraday's law

Ohm's law $\mathbf{j} = rac{
abla imes \mathbf{B}}{\mu_0}$ Ampere's law

20/43

We advance the following equations:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$
 Continuity equation
$$\frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot [\rho \mathbf{v} \mathbf{v} - \mathbf{B} \mathbf{B} + P^*] = 0$$
 Momentum equation

$$\frac{\partial \mathcal{E}}{\partial t} + \nabla \cdot \left[(\mathcal{E} + P^*) \mathbf{v} + \frac{\mathbf{E} \times \mathbf{B}}{\mu_0} \right] = 0$$
$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \times \mathbf{E} = 0$$

Faraday's law

Energy equation

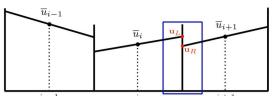
Under the constraint:

$$\nabla \cdot \mathbf{B} = 0$$

Step 2: Numerical implementation

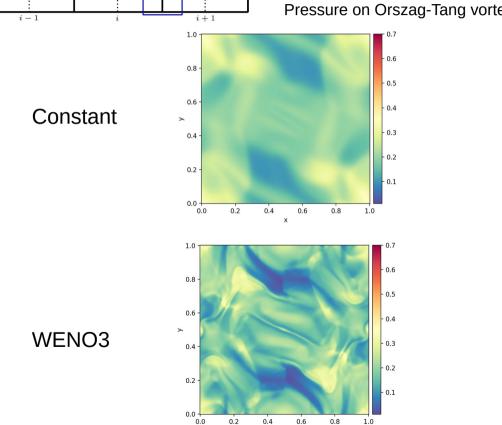
Numerical scheme: Godunov Finite Volumes

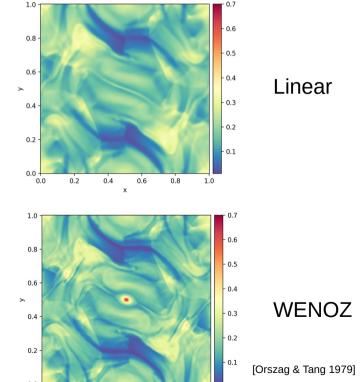
[Godunov 1959]



Reconstruction step

Pressure on Orszag-Tang vortex 256x256 at t=1.

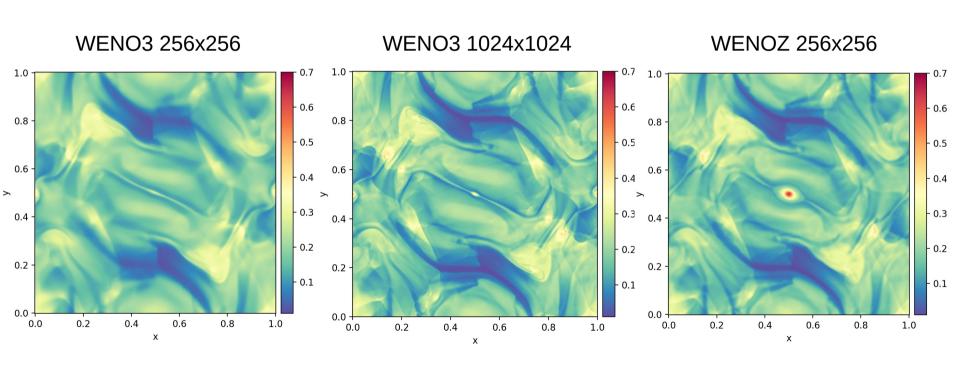




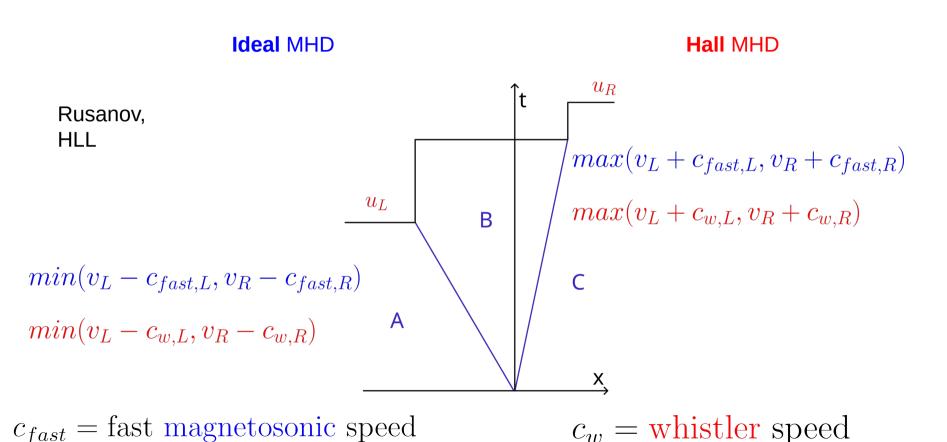
0.2

0.4

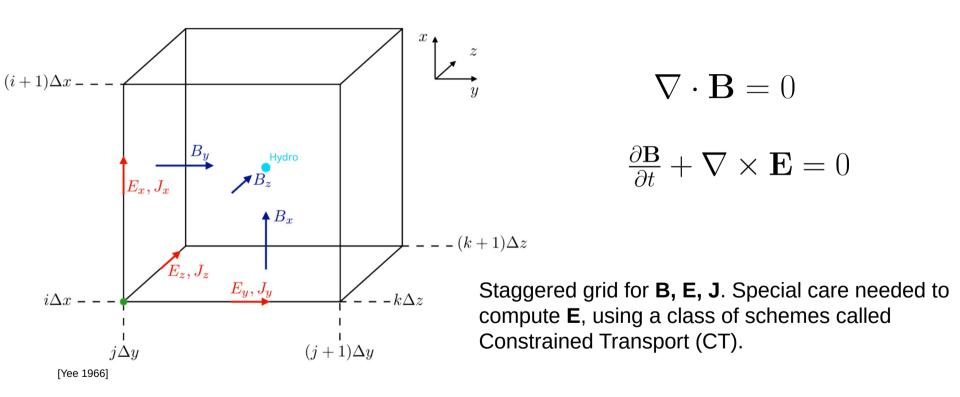
Functional Test: Orszag-Tang vortex



Riemann Solvers

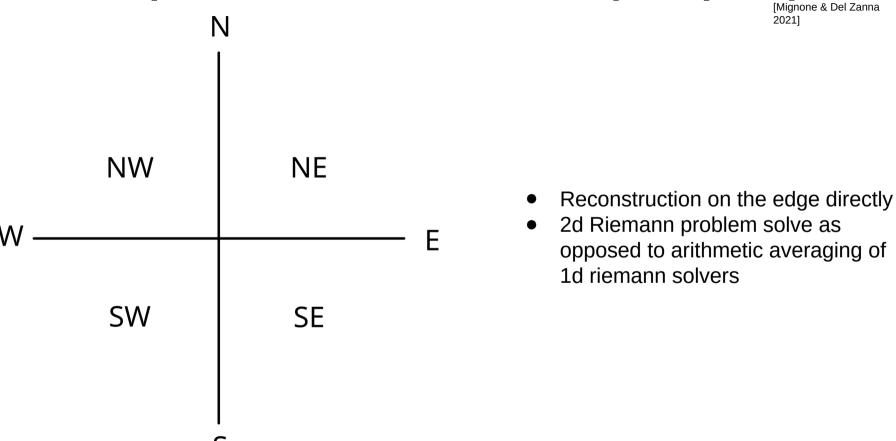


Maintaining divergence free condition

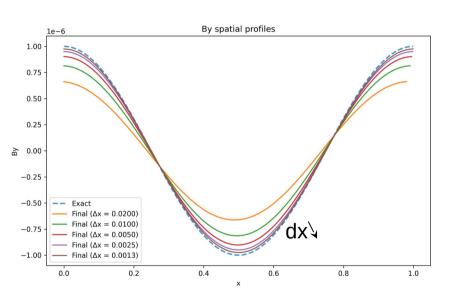


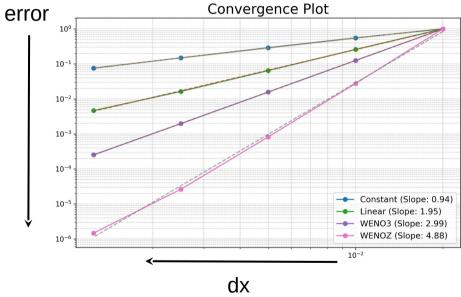
In PHARE: CT averaged, Upwind CT.

Upwind Constrained Transport (UCT)

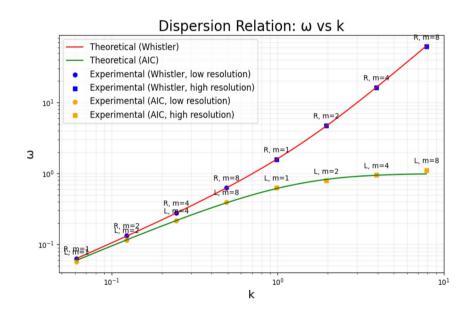


Theoretical Validation: Convergence





Theoretical Validation: Hall MHD dispersion



Alfvén Ion Cyclotron:

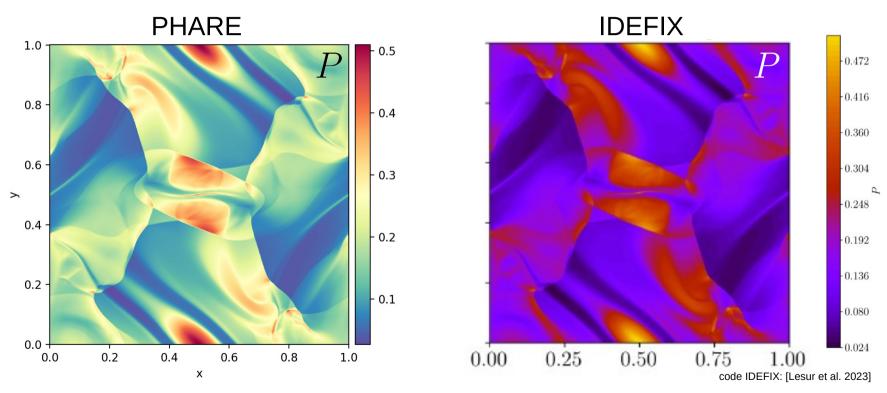
$$\omega_L = \frac{k^2}{2} \left(\sqrt{1 + \frac{4}{k^2}} - 1 \right)$$

Whistler:

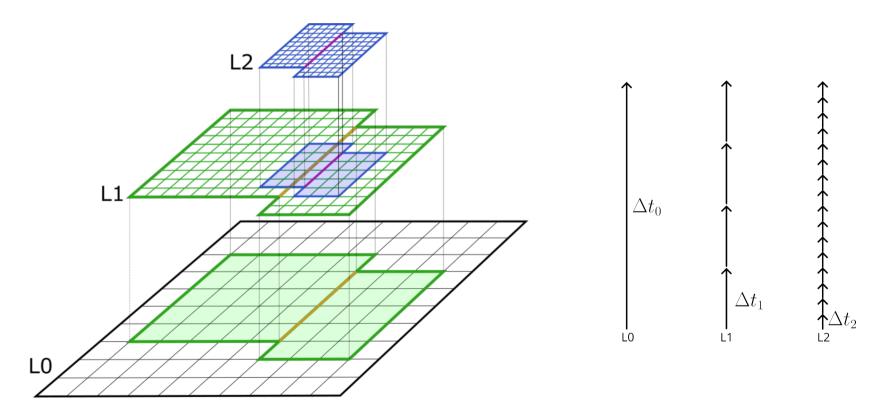
$$\omega_R = \frac{k^2}{2} \left(\sqrt{1 + \frac{4}{k^2}} + 1 \right)$$

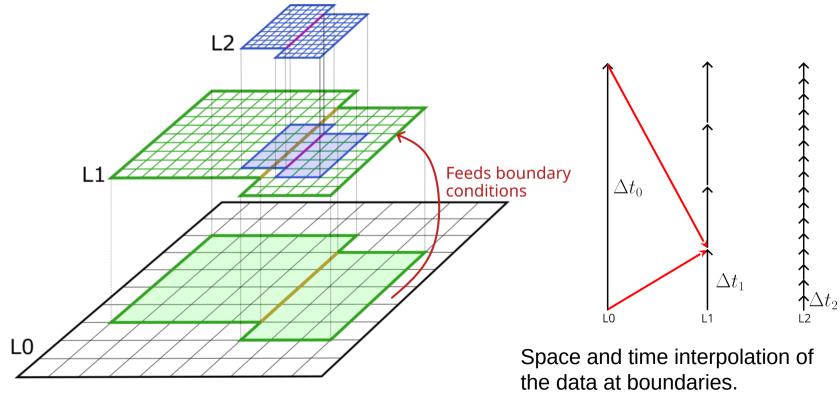
Functional Test: Orszag-Tang vortex

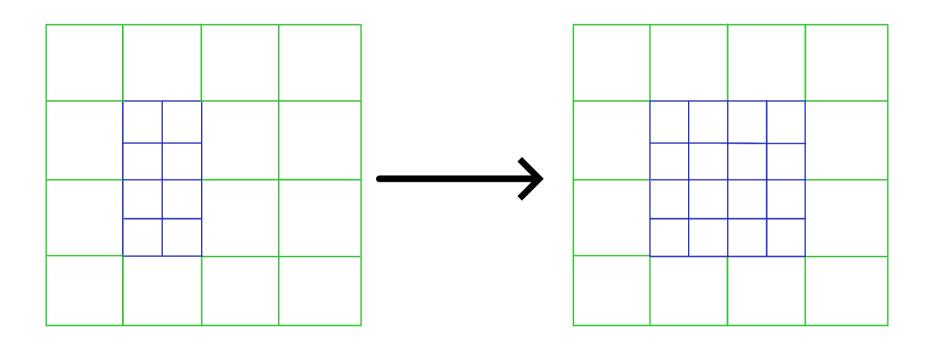
[Orszag & Tang 1979]



Pressure plot of the Orszag-Tang vortex at t=0.5 with a domain of 1, 1024x1024 cells and a second order scheme. PHARE (left) Idefix (right).



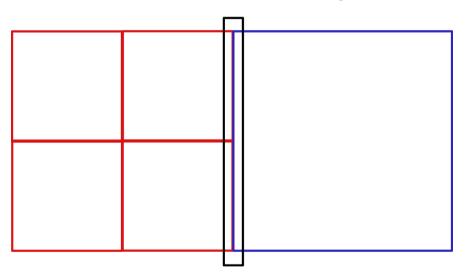


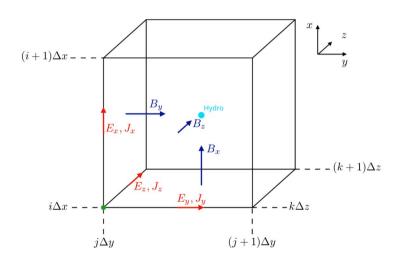


Adaptive mesh: grid can change to follow a criteria on the solution

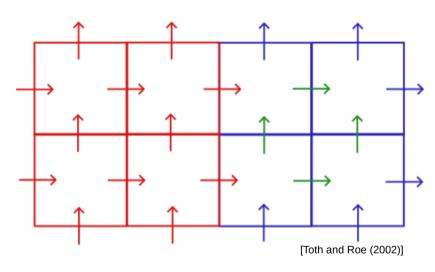
The conservative refinement problem

coarse-fine boundary





The conservative refinement problem



Idea: refine the new fine faces in such a way that:

$$\nabla \cdot \mathbf{B}_{fine} = \frac{1}{r^d} \nabla \cdot \mathbf{B}_{coarse}$$

with r the refinement ratio and d the dimension.

$$u = B_x, v = B_y, w = B_z$$

$$u^{0,j,k} = \frac{1}{2}(u^{+,j,k} + u^{-,j,k}) + U_{xx} + k(\Delta z)^2 V_{xyz} + j(\Delta y)^2 W_{xyz}$$

$$v^{i,0,k} = \frac{1}{2}(v^{i,+,k} + v^{i,-,k}) + V_{yy} + i(\Delta x)^2 W_{xyz} + k(\Delta z)^2 U_{xyz}$$

$$w^{i,j,0} = \frac{1}{2}(v^{i,j,+} + v^{i,j,-}) + W_{zz} + j(\Delta y)^2 U_{xyz} + i(\Delta x)^2 V_{xyz}$$

with:
$$U_{xx} = \frac{1}{8} \sum_{ijk=\pm} ijv^{i,j,k} + ikw^{i,j,k}$$

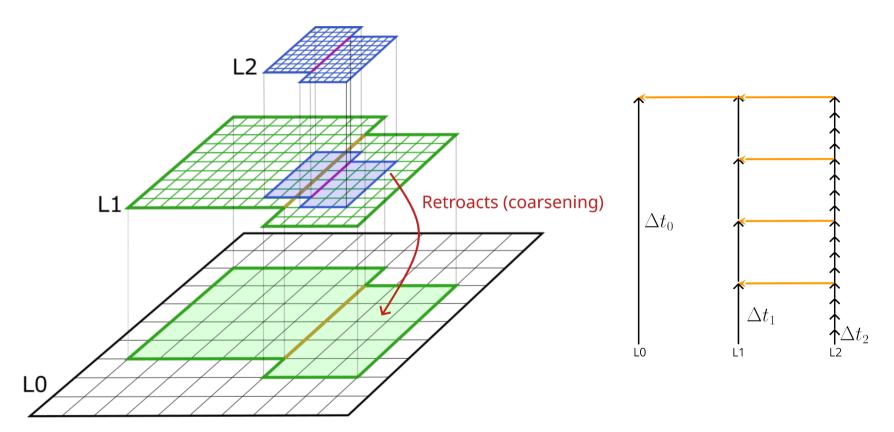
 $V_{yy} = \frac{1}{8} \sum_{ijk=\pm} iju^{i,j,k} + jkw^{i,j,k}$
 $W_{zz} = \frac{1}{8} \sum_{ijk=\pm} iku^{i,j,k} + jkv^{i,j,k}$

and:

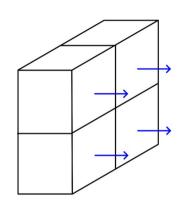
$$U_{xyz} = \frac{1}{8} \sum_{ijk=\pm} \frac{ijku^{i,j,k}}{(\Delta y)^2 + (\Delta z)^2}$$

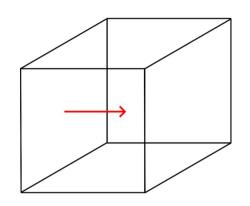
$$V_{xyz} = \frac{1}{8} \sum_{ijk=\pm} \frac{ijkv^{i,j,k}}{(\Delta x)^2 + (\Delta z)^2}$$

$$W_{xyz} = \frac{1}{8} \sum_{ijk=\pm} \frac{ijkw^{i,j,k}}{(\Delta x)^2 + (\Delta y)^2}$$



Conserving flux at coarse fine interfaces





Need to express the whole time integration step with a single flux. With multistep integrators, use Butcher flux:

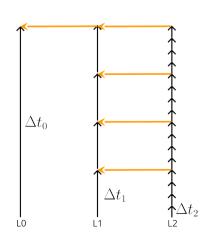
$$\mathbf{U}^{n+1} = \mathbf{U}^n + \sum_{step} \gamma(\omega_{step}, \omega_{step-1}, ..., \omega_0) \mathbf{F}^{step}$$

$$\mathbf{F}_{fine}^{total} = rac{1}{\mathcal{C}_{ ext{sub-steps}} imes \mathcal{C}_{ ext{shared fine faces}}} \sum_{ ext{sub-steps}} \sum_{ ext{shared fine faces}} \mathbf{F}_{fine}$$

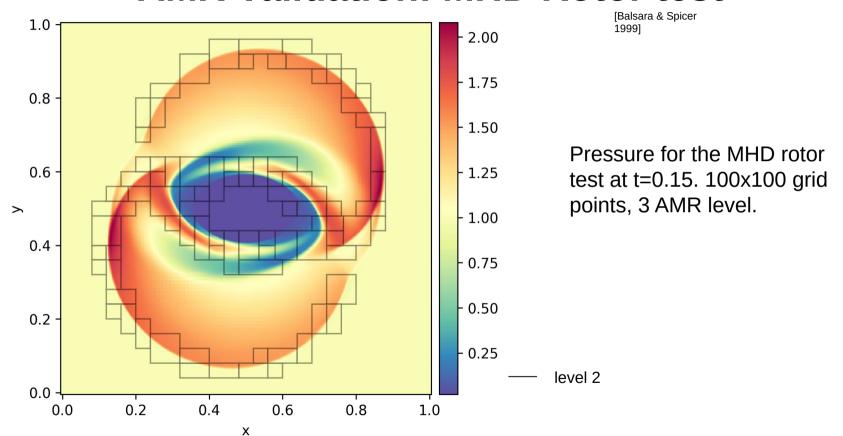
$$\mathbf{U}^{n+1} = \mathbf{U}^{n+1} - rac{\Delta t_{coarse}}{\Delta l} \left(\mathbf{F}_{coarse} - \mathbf{F}_{fine}^{total}
ight)$$

Space-time average of the fluxes

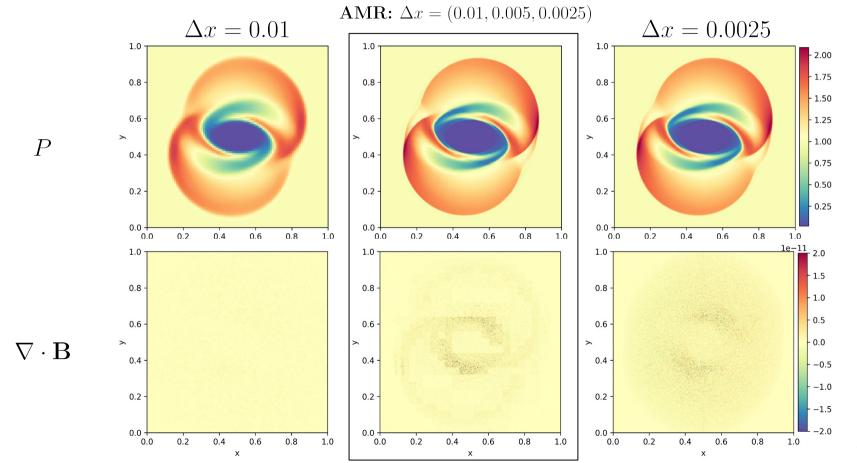
<---- Correction step



AMR Validation: MHD Rotor test

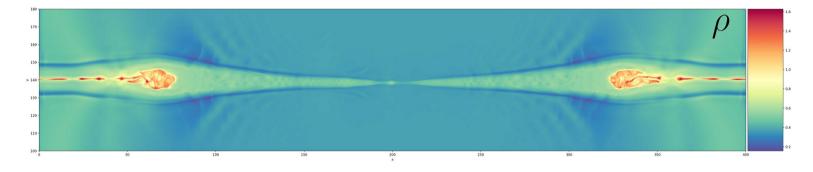


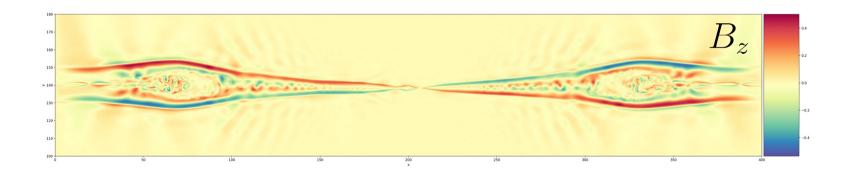
AMR Validation: MHD Rotor test



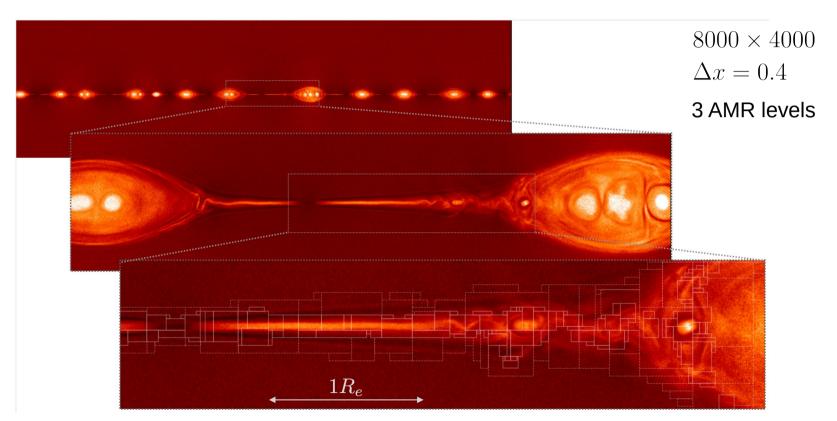
Symmetric current sheet [Harris 1962]

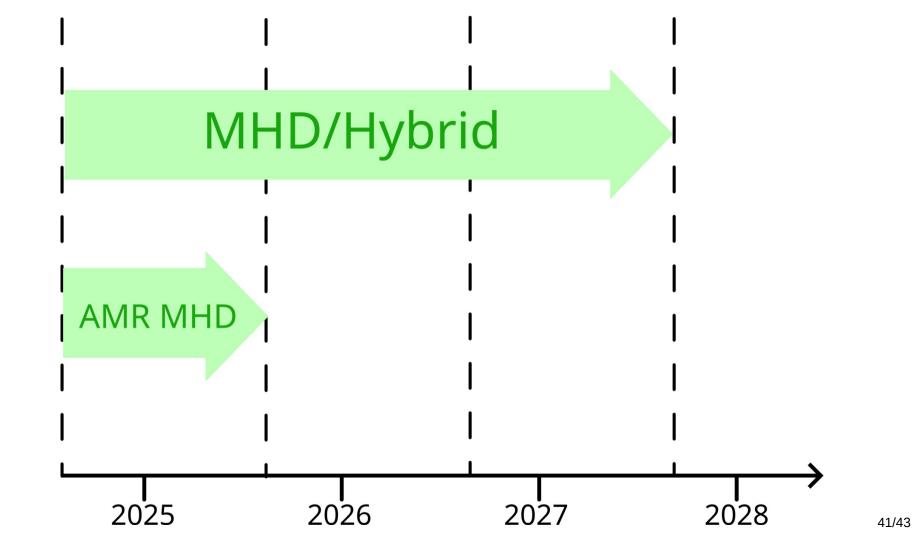
3 AMR levels

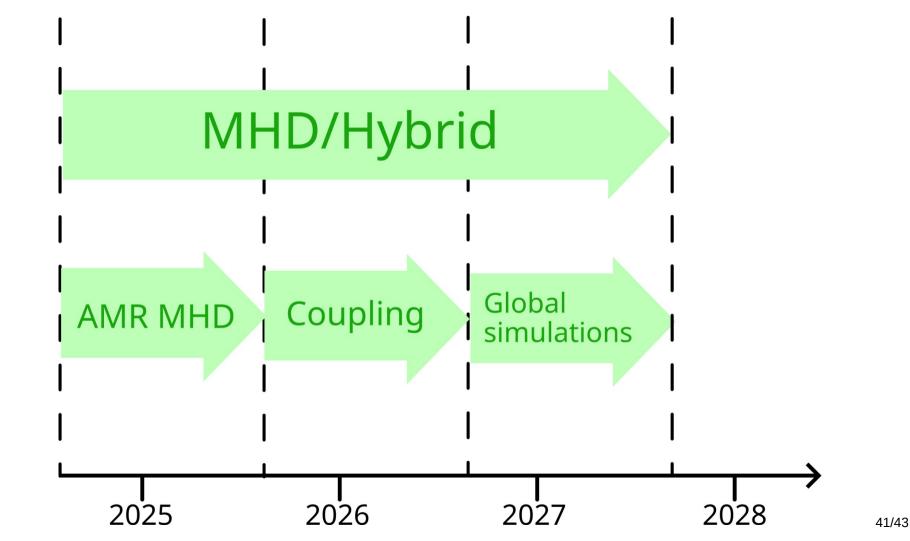




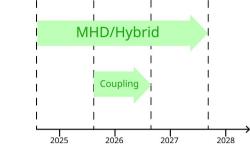
Symmetric current sheet with the hybrid solver

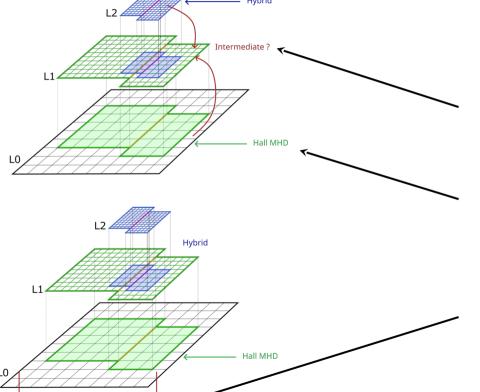






Lots to experiment with





Higher moment schemes ?

- Test particles in MHD ?
- Guiding center schemes ?

- Ideal MHD?
- With asymptotic preserving schemes?

Many new things coming to the code in the coming year

- Magnetospheric boundary conditions
- 3d visualisation
- Improved performances
- MHD/Hybrid coupling
 - → The main ingredients for our global

simulations!

